Assay Based Incidence Estimation With Survey Bootstrap Intervals
rita_bootstrap.Rd
Assay Based Incidence Estimation With Survey Bootstrap Intervals
Usage
rita_bootstrap(
recent,
undiagnosed,
low_viral,
hiv,
tslt,
ever_hiv_test,
weights,
rep_weights = NULL,
rep_weight_type = c("BRR", "Fay", "JK1", "JK2", "JKn", "bootstrap", "other"),
combined_weights = TRUE,
tau = 2,
frr = lag_avidity_frr()[1],
test_history_population = c("undiagnosed", "negative"),
assay_surv = lag_avidity_survival(tau * 365),
diag_surv = NULL,
treated = NULL,
treat_surv = NULL,
conf_level = 0.95,
show_progress = TRUE,
...
)
Arguments
- recent
Logical. Tests recent on assay.
- undiagnosed
Logical. No previous diagnosis.
- low_viral
Logical. Has low viral load (< 1000).
- hiv
Logical. Is HIV positive.
- tslt
Time since last HIV test (days).
- ever_hiv_test
Subject has been tested for HIV in the past.
- weights
Survey weights.
- rep_weights
A data.frame of replicate weights. See survey::svrrepdesign
- rep_weight_type
The type of resampling weights. See svrepdesign.
- combined_weights
TRUE if the rep_weights already include the sampling weights. This is usually the case.
- tau
long term cut-off (years).
- frr
False recency rate among treatment naive non-elite controller non-AIDS individuals.
- test_history_population
If undiagnosed, the testing histories of undiagnosed HIV+ people are used. If negative, the HIV- population is used.
- assay_surv
Survival function vector for assay among treatment naive non-elite controller non-AIDS individuals.
- diag_surv
time to diagnosis survival function vector.
- treated
A logical vector indicating a subject is on treatment. Only needed in the case of the use of RITA2 screening.
- treat_surv
Probability an individual diagnosed i days ago is not on treatment.
- conf_level
confidence level for bootstrap interval.
- show_progress
If TRUE, prints bootstrap progress. This may also be a callback function taking one parameter equal to the index of the current replicate.
- ...
additional parameters to svrepdesign.
Value
A data.frame with columns for the estimate, standard error, lower confidence bound and upper confidence bound. Rows are defined by: 1. `incidence`: The incidence. 2. `residual_frr`: The false recency rate accounting for the screening process. 3. `omega_rs`: The mean duration of recency up to tau accounting for the screening process. 4. `P(R|S)` : The proportion of screened in individual who test recent. 5. `P(S|H)` : The proportion of HIV+ individuals that are screened in. 6. `P(H)` : HIV prevalence.
Examples
data("assay_data")
rep_weights <- dplyr::select(assay_data, dplyr::contains("btwt"))
rita_bootstrap(
recent=assay_data$recent,
undiagnosed=assay_data$undiagnosed,
low_viral=assay_data$elite_cntr,
hiv=assay_data$hiv,
weights=assay_data$weights,
tslt=assay_data$tslt,
ever_hiv_test=assay_data$ever_hiv_test,
rep_weights = rep_weights,
rep_weight_type = "JK1"
)
#> Warning: scale (n-1)/n not provided: guessing n=number of replicates
#> estimate std_error lower_bound upper_bound
#> incidence 0.0151573230 0.0110181526 -0.0064378594 0.03675251
#> residual_frr 0.0008826826 0.0001937011 0.0005030355 0.00126233
#> omega_rs 0.2921342013 0.0193668352 0.2541759019 0.33009250
#> omega_s 1.0931364222 0.1296151234 0.8390954485 1.34717740
#> P(R|S) 0.0728330452 0.0471440518 -0.0195675985 0.16523369
#> P(S|H) 0.1953130107 0.0255741415 0.1451886144 0.24543741
#> P(H) 0.2480427494 0.0146154193 0.2193970539 0.27668844